Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function

نویسندگان

  • Pearl A. Campbell
  • Carolina Perez-Iratxeta
  • Miguel A. Andrade-Navarro
  • Michael A. Rudnicki
چکیده

Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain 'ES' have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells.

The genetic networks controlling stem cell identity are the focus of intense interest, due to their obvious therapeutic potential as well as exceptional relevance to models of early development. Genome-wide mapping of transcriptional networks in mouse embryonic stem cells (mESCs) reveals that many endogenous noncoding RNA molecules, including long noncoding RNAs (lncRNAs), may play a role in co...

متن کامل

A Data Integration Approach to Mapping OCT4 Gene Regulatory Networks Operative in Embryonic Stem Cells and Embryonal Carcinoma Cells

It is essential to understand the network of transcription factors controlling self-renewal of human embryonic stem cells (ESCs) and human embryonal carcinoma cells (ECs) if we are to exploit these cells in regenerative medicine regimes. Correlating gene expression levels after RNAi-based ablation of OCT4 function with its downstream targets enables a better prediction of motif-specific driven ...

متن کامل

A Conserved Oct4/POUV-Dependent Network Links Adhesion and Migration to Progenitor Maintenance

BACKGROUND The class V POU domain transcription factor Oct4 (Pou5f1) is a pivotal regulator of embryonic stem cell (ESC) self-renewal and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. Oct4 is also an important evolutionarily conserved regulator of progenitor cell differentiation during embryonic development. RESULTS Here we examine the function of Oct4 homologs in Xe...

متن کامل

HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts

Poor cell survival and limited functional benefits have restricted mesenchymal stem cell (MSC) efficacy for treating myocardial infarction (MI), suggesting that a better understanding of stem cell biology is needed. The transcription factor HIF-2α is an essential regulator of the transcriptional response to hypoxia, which can interact with embryonic stem cells (ESCs) transcription factor Oct4 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007